Study of the transient phase of the forgetting factor RLS
نویسنده
چکیده
We investigate the convergence properties of the forgetting factor RLS algorithm in a stationary data environment. Using the settling time as our performance measure, we show that the algorithm exhibits a variable performance that depends on the particular combination of the initialization and noise level. Specifically when the observation noise level is low (high SNR) RLS, when initialized with a matrix of small norm, it has an exceptionally fast convergence. Convergence speed decreases as we increase the norm of the initialization matrix. In a medium SNR environment, the optimum convergence speed of the algorithm is reduced as compared with the previous case; however, RLS becomes more insensitive to initialization. Finally, in a low SNR environment, we show that it is preferable to initialize the algorithm with a matrix of large norm.
منابع مشابه
Implementation of the Least-Squares Lattice with Order and Forgetting Factor Estimation for FPGA
A high performance RLS lattice filter with the estimation of an unknown order and forgetting factor of identified system was developed and implemented as a PCORE coprocessor for Xilinx EDK. The coprocessor implemented in FPGA hardware can fully exploit parallelisms in the algorithm and remove load from a microprocessor. The EDK integration allows effective programming and debugging of hardware ...
متن کاملA Novel Forgetting Factor Recursive Least Square Algorithm Applied to the Human Motion Analysis
This paper is concerned with studying the forgetting factor of the recursive least square (RLS). A new dynamic forgetting factor (DFF) for RLS algorithm is presented. The proposed DFF-RLS is compared to other methods. Better performance at convergence and tracking of noisy chirp sinusoid is achieved. The control of the forgetting factor at DFF-RLS is based on the gradient of inverse correlation...
متن کاملLow Complexity and High speed in Leading DCD ERLS Algorithm
Adaptive algorithms lead to adjust the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor when there are a lot of changes in the system. Vedic mathematics is used to implement the multiplier and the divider in the VFF equatio...
متن کاملGradient based variable forgetting factor RLS algorithm
The recursive least squares (RLS) algorithm is well known for its good convergence property and small mean square error in stationary environments. However RLS using constant forgetting factor cannot provide satisfactory performance in time varying environments. In this seminar, three variable forgetting factor (VFF) adaptation schemes for RLS are presented in order to improve the tracking perf...
متن کاملRLS Algorithm with Variable Forgetting Factor for Decision Feedback Equalizer over Time-Variant Fading Channels
In a high-rate indoor wireless personal communication system, the delay spread due to multipath propagation results in intersymbol interference (ISI) which can signi cantly increase the transmission bit error rate (BER). Decision feedback equalizer (DFE) is an e cient approach to combating the ISI. Recursive least squares (RLS) algorithm with a constant forgetting factor is often used to update...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 45 شماره
صفحات -
تاریخ انتشار 1997